2024年Original Article

  • 2024)
    • Igarashi Y, Hasegawa A, Matsumoto S, Iwata H, Kojima R, Okuno Y, Yamada H, Constructing a graph neural network-based artificial intelligence model to predict drug-induced phospholipidosis potential, Fundamental Toxicological Sciences, 11(6):279-288, 2024/11/22, doi:10.2131/fts.11.279
    • Toda Y, Fujita H, Mino K, Koyama T, Matsuoka S, Kaizuka T, Agawa M, Matsumoto S, Idei A, Nishikori M, Okuno Y, Osada H, Yoshida M, Takaori-Kondo A, Iwai K, Synergistic involvement of the NZF domains of the LUBAC accessory subunits HOIL-1L and SHARPIN in the regulation of LUBAC function, Cell Death & Disease, 15(11):813, 2024/11/11, doi:10.1038/s41419-024-07199-z
    • Sasagasako T, Ueda A, Mineharu Y, Mochizuki Y, Doi S, Park S, Terada Y, Sano N, Tanji M, Arakawa Y, Okuno Y, Postoperative Karnofsky performance status prediction in patients with IDH wild-type glioblastoma: A multimodal approach integrating clinical and deep imaging features, PLoS One, 11;19(11):e0303002, 2024/11/11, doi:10.1371/journal.pone.0303002
    • Yamaji K, Kanenawa K, Morofuji T, Nishikawa R, Imada K, Kohjitani H, Watanabe H, Tazaki J, Taniwaki M, Koga S, Akashi R, Kubo S, Ohya M, Kikuchi T, Ohira H, Numasawa Y, Arikawa M, Iwama M, Kitai T, Kobayashi Y, Shiomi H, Tada T, Yamaji Y, Daidoji H, Ohtani H, Furukawa Y, Kadota K, Toyofuku M, Ando K, Ono K, Kimura T; PREDICTOR investigators, Serial Optical Coherence Tomography Assessment of Coronary Atherosclerosis and Long-Term Clinical Outcomes., J Am Heart Assoc., 13(21):e034458, 2024/10/22, doi:10.1161/JAHA.123.034458
    • Mitsugu A, Toru E, Kazuhiro T, Shigeyuki M, Yunoshin T, Hironori K, Gert-Jan B, Tsutomu Y, Yuta I, Yukari S, Narutoshi K, Mitsunori I, Yasushi O, Molecular Dynamics Unveils Multiple-Site Binding of Inhibitors with Reduced Activity on the Surface of Dihydrofolate Reductase, Journal of the American Chemical Society, 2024/10/12, In press, doi:10.1021/jacs.4c04648
    • Tomoki S, Yohei M, Takeshi F, Yasutaka F, Hideo C, Silsu P, Kota N, Yasuzumi M, Masakazu O, Takayuki K, Yoshiki A, RNF213 Mutation Associated with the Progression from Middle Cerebral Artery Steno-Occlusive Disease to Moyamoya Disease, Translational stroke research, Advance online publication, 2024/8/27, doi:10.1007/s12975-024-01293-2
    • Hosoya K, Ozasa H, Tanji M, Yoshida H, Ajimizu H, Tsuji T, Yoshida H, Terada Y, Sano N, Mineharu Y, et al., Performance status improvement and advances in systemic treatment after brain metastases resection: a retrospective single-center cohort study of non-small cell lung cancer patients, BMC Cancer, 2024;24(1):1030, 2024/8/21, doi:10.1186/s12885-024-12798-2
    • Cun Y, Guo W, Ma B, Okuno Y, Wang J. Decoding the specificity of m6A RNA methylation and its implication in cancer therapy. Molecular therapy : the journal of the American Society of Gene Therapy, 32(8):2461-2469, 2024/8/7, doi:10.1016/j.ymthe.2024.05.035
    • Nishiwaki S, Shizuta S, Inoue T, Morinaga A, Yoneda F, Tanaka M, Aizawa T, Kohjitani H, Ono K, Prevalence and characteristics of atrioventricular nodal reentrant tachycardia with a bystander concealed nodoventricular/nodofascicular pathway, Heart Rhythm, S1547-5271(24)02823-6,  2024/6/26, doi:10.1016/j.hrthm.2024.06.049
    • Taisei Tosaki, Eiichiro Uchino, Ryosuke Kojima, Yohei Mineharu, Mikio Arita, Nobuyuki Miyai, Yoshinori Tamada, Tatsuya Mikami, Koichi Murashita, Shigeyuki Nakaji, Yasushi Okuno, Out-of-distribution Reject Option Method for Dataset Shift Problem in Early Disease Onset Prediction. arXiv.org. 2024;09:14:01, 2024/5/30, doi.org/10.48550/arXiv.2405.19864
    • Suzuki, M., Mineharu, Y., Okawa, M., Yoshida, K., Nagata, M., Yang, T., Suzuki, K., Takayama, N., Yamamoto, Y., Tabara, Y., Miyamoto, S., Arakawa, Y., & Matsuda, F. (2024). Common and distinct risk profiles of asymptomatic extra- and intracranial atherosclerosis in the Nagahama cohort, Journal of Stroke and Cerebrovascular Diseases, 33(8), 107782.Advance online publication, 2024/5/20, doi:10.1016/j.jstrokecerebrovasdis.2024.107782
    • Tanaka M, Kohjitani H, Yamamoto E, Morimoto T, Kato T, Yaku H, Inuzuka Y, Tamaki Y, Ozasa N, Seko Y, Shiba M, Yoshikawa Y, Yamashita Y, Kitai T, Taniguchi R, Iguchi M, Nagao K, Kawai T, Komasa A, Kawase Y, Morinaga T, Toyofuku M, Furukawa Y, Ando K, Kadota K, Sato Y, Kuwahara K, Okuno Y, Kimura T, Ono K; KCHF Study Investigators., Development of interpretable machine learning models to predict in-hospital prognosis of acute heart failure patients, ESC Heart Fail., Advance online publication, 2024/5/15, doi:10.1002/ehf2.14834
    • Bekker GJ, Oshima K, Araki M, Okuno Y, Kamiya N, CBinding Mechanism between Platelet Glycoprotein and Cyclic Peptide Elucidated by McMD-Based Dynamic Docking, Journal of Chemical Information and Modeling, 2024;64(10):4158-4167, 2024/5/15, doi:10.1021/acs.jcim.4c00100
    • Nishiwaki S, Shizuta S, Kohjitani H, Ono K, Insight from the microelectrodes in case of two different types of premature ventricular contractions originating from left ventricular summit, Indian Pacing and Electrophysiology Journal, 2024;24(4):212-216, 2024/5/8, doi:10.1016/j.ipej.2024.05.001
    • Inoue M, Ekimoto T, Yamane T, Ikeguchi M, Computational Analysis of Activation of Dimerized Epidermal Growth Factor Receptor Kinase Using the String Method and Markov State Model, Journal of chemical information and modeling, 2024;64(9):3884-3895, 2024/4/26, doi:10.1021/acs.jcim.4c00172
    • Ikeda, S., Sakata, A., Arakawa, Y., Mineharu, Y., Makino, Y., Takeuchi, Y., Fushimi, Y., Okuchi, S., Nakajima, S., Otani, S., & Nakamoto, Y., Clinical and imaging characteristics of supratentorial glioma with IDH2 mutation, Neuroradiology, 2024;66(6):973-981, 2024/4/24, doi:10.1007/s00234-024-03361-8
    • Mori S, Izumi H, Araki M, Liu J, Tanaka Y, Kagawa Y, Sagae Y, Ma B, Isaka Y, Sasakura Y, Kumagai S, Sakae Y, Tanaka K, Shibata Y, Udagawa H, Matsumoto S, Yoh K, Okuno Y, Goto K, Kobayashi SS., LTK mutations responsible for resistance to lorlatinib in non-small cell lung cancer harboring CLIP1-LTK fusion, Communications biology, 2024;7(1):412, 2024/4/4, doi:10.1038/s42003-024-06116-6
    • Hiroaki Iwata*, Yoshihiro Hayashi*, Takuto Koyama, Aki Hasegawa, Kosuke Ohgi, Ippei Kobayashi, Yasushi Okuno, Feature extraction of particle morphologies of pharmaceutical excipients from scanning electron microscope images using convolutional neural networks, International Journal of Pharmaceutics, 22024;653:123873, 2024/3/25, doi:10.1016/j.ijpharm.2024.123873
    • Sakuragi M, Uchino E, Sato N, Matsubara T, Ueda A, Mineharu Y, Kojima R, Yanagita M, Okuno Y, Interpretable machine learning-based individual analysis of acute kidney injury in immune checkpoint inhibitor therapy, PLoS One, 19(3):e0298673, 2024/3/19, doi:10.1371/journal.pone.0298673
    • Kawata M, Yonezawa A, Mineharu Y, Itohara K, Mizota T, Matsui Y, Kikuchi T, Yamao Y, Hattori EY, Hamada M, Hira D, Furukawa K, Miyamoto S, Terada T, Matsubara K, Arakawa Y. Development of extended pharmacokinetic models for propofol based on measured blood and brain concentrations, Scientific Reports, 14(1), 6326, 2024/3/15, doi:10.1038/s41598-024-56863-z
    • Igarashi Y, Kojima R, Matsumoto S, Iwata H, Okuno Y, Yamada H, Developing a GNN-based AI model to predict mitochondrial toxicity using the bagging method, The Journal of Toxicological Sciences, 2024;49(3):117-126, 2024/3/1, doi:10.2131/jts.49.117
    • Suzuki M, Uchibori K, Oh-Hara T, Nomura Y, Suzuki R, Takemoto A, Araki M, Matsumoto S, Sagae Y, Kukimoto-Niino M, Kawase Y, Shirouzu M, Okuno Y, Nishio M, Fujita N, Katayama R, A macrocyclic kinase inhibitor overcomes triple resistant mutations in EGFR-positive lung cancer, NPJ Precis Oncol., 2024;8(1):46, 2024/2/23, doi:10.1038/s41698-024-00542-9
    • Tomoto M, Mineharu Y, Sato N, Tamada Y, Nogami-Itoh M, Kuroda M, Adachi J, Takeda Y, Mizuguchi K, Kumanogoh A, Natsume-Kitatani Y, & Okuno Y. Idiopathic pulmonary fibrosis-specific Bayesian network integrating extracellular vesicle proteome and clinical information.,Scientific Reports, 2024;14:1315. 2024/1/15, doi.org/10.1038/s41598-023-50905-8
    • Kohjitani H, Koshimizu H, Nakamura K, & Okuno Y, Recent developments in machine learning modeling methods for hypertension treatment.,Hypertens. Res. , 1–8 (2024) 2024/1/12, doi:10.1038/s41440-023-01547-w.
    • Ryo Kanada*, Atsushi Tokuhisa*, Yusuke Nagasaka, Shingo Okuno, Koichiro Amemiya, Shuntaro Chiba, Gert-Jan Bekker, Narutoshi Kamiya, Koichiro Kato, and Yasushi Okuno, Enhanced Coarse-Grained Molecular Dynamics Simulation with a Smoothed Hybrid Potential Using a Neural Network Model, Journal of Chemical Theory and Computation, 2024;20(1):7-17, 2024/1/9, doi:10.1021/acs.jctc.3c00889